Abstract

Study of elliptic and triangular flow of identified particles in Au+Au collisions $\sqrt{s_{NN}} = 11.5 - 62.4$ GeV in the STAR experiment

Author: Alexey Povarov (for the STAR Collaboration) National Research Nuclear University MEPhI

A main purpose of the STAR experiment at RHIC is to study the properties of matter formed in heavy-ion collisions. Azimuthal anisotropy of produced particles is one of the important observables sensitive to the transport properties of the strongly-interacting matter. In this work, we report results for elliptic (v_2) and triangular (v_3) flow of identified particles $(\pi^{\pm}, K^{\pm}, p, \bar{p})$ in Au+Au collisions at $\sqrt{s_{NN}} = 11.5, 14.5, 19.6, 27, 39$ and 62.4 GeV. Measurements of the anisotropic flow coefficients v_2 and v_3 are presented as a function of particle transverse momenta (p_T) . The elliptic and triangular flow show mass ordering at $p_T < 2$ GeV/c and meson/baryon splitting at $2 < p_T < 3$ GeV/c. New measurements of v_3 serve important model constraints, and provide new information about transport properties of QGP.